Our 5 Monthly Magazines

TRENDING NOW

The only Fire Safety Security Dedicated Publication House publishing 5 monthly magazines on Fire & Safety, Occupational Workmen Safety and Industrial Safety, Security and Surveillance including Cyber Security Since 1998

Our Clients

HomeArticle/ FeaturesThe Door Control Debate Continues

The Door Control Debate Continues

DoorThe debate may be broken down into a number of more specific question that frame the larger issue in a simpler way (or a more complex way, depending on your perspective):

Will reducing the oxygen concentration to limit the HRR also have a negative effect on survivability of occupants due to the oxygen deficient atmosphere?

Which results in a more toxic atmosphere, closing the door or leaving the door open?

Which presents the larger and most significant threat, fire development or the toxicity of the atmosphere?

As always there are no simple answers to these questions. The answers depend on a number of variables that are unlikely to be known during fireground operations. However, we cannot be paralyzed by this complexity as strategic and tactical decisions must be made in a timely manner.

Door 1Place the Questions in Context

In order to frame the questions, consider a fire scenario which could result in serious injury or fatality to one or more building occupants: A fire in a one story, three bedroom, single family dwelling, occurring in the late evening or early morning hours, resulting from ignition of bedding as the result of contact with a cigarette (USFA, 2013a, 2013b). Bedroom 1 is the room of origin and has an open door to a hallway leading to the remainder of the house. Bedroom 2 is immediately adjacent to Bedroom 1 and has a closed door. Bedroom 3 is slightly further away from Bedroom 1 (than Bedroom 2) and has an open door. The home has functioning smoke alarms and the occupant of Bedroom 3 was alerted to the fire by alarm activation and was able to escape. The occupants of Bedrooms 1 and 2 were not alerted by the smoke alarm and remained in their respective bedrooms.

Scenario 1: The occupant of Bedroom 3 exited the home, leaving the front door open. Bedroom windows are closed and remain intact. These conditions remain constant until the arrival of the first fire company.

Scenario 2: The occupant of Bedroom 3 exited the home, closing the front door. Bedroom windows are closed and remain intact. These conditions remain constant until the arrival of the first fire company.

In both of these scenarios, companies arrive to find one occupant who has exited the building, and two occupants reported with a last known location in Bedrooms 1 and 2.

Fire Development in Scenario 1

In this scenario, the open bedroom door provides an adequate supply of oxygen to allow the fire to quickly progress from the incipient to the growth stage and transition through flashover. This results in untenable conditions in the fire compartment. A bi-directional air track exists in the flow path between the front door and the fire. Hot gases will exit the fire compartment and flow towards the front door at the upper level. Prior to flashover the fire will become ventilation limited and will continue in this state as the fire becomes fully developed in Bedroom 1 and flames extend into the hallway.

Conditions will vary considerably throughout the dwelling depending on location and height above the floor. Close to the fire, the hot upper layer will be well defined, but radiant heat flux at floor level will likely make conditions thermally untenable. Smoke production will be substantial and will likely fill any areas open to the fire (e.g., living spaces open to the hallway and bedroom with an open door). As distance from the fire increases, smoke will cool somewhat and smoke will be present in both the hot upper layer and the cooler layer below. Air moving from the open front door to the fire, will provide some cooling and a higher oxygen concentration along the flow path. However, continued fire development will result in increased smoke production and will likely overwhelm the ventilation provided by the open front door, causing increased velocity of smoke discharge and lowering of the upper layer. Flames will extend down the hallway and towards the front door, increasing radiant heat flux, pyrolizing fuel, and will likely result in a growth stage fire along the flow path.

Conditions at the lower levels remote from the fire may remain tenable for some time and even with close proximity to the fire compartment, Bedroom 2 with the closed door is also likely to provide tenable conditions for some time.

Fire Development in Scenario 2

In Scenario 2, the basic conditions at the start of the fire are the same. However, in this case, the exiting occupant closes the front door. Initially, there will be little difference in fire development as oxygen from throughout interconnected compartments will sustain fire growth. A bi-directional air track exists in the flow path between uninvolved spaces and the fire compartment. Hot gases will exit the fire compartment and flow into the hallway, filling areas open to the fire compartment at the upper level. Prior to flashover the fire will become ventilation limited and become more ventilation limited as the fire becomes fully developed in Bedroom 1 and flames extend into the hallway. As oxygen inside the house is used by the fire and oxygen concentration decreases, HRR and flaming combustion will be reduced. However, combustion will continue in the fire compartment and heat transfer in adjacent areas will result in continued pyrolysis, increasing the concentration of gas phase fuel in the smoke.

As in Scenario 1, conditions will vary considerably throughout the dwelling depending on location and height above the floor. However, areas open to the fire compartment are likely to be smoke logged (filled with smoke). Temperatures will be lower and oxygen concentration will likely be higher in areas remote from the fire. As the HRR continues to decrease, temperatures will slowly begin to drop throughout the building.

Conditions at the lower levels remote from the fire may remain tenable for some time and even with close proximity to the fire compartment, Bedroom 2 with the closed door is also likely to provide tenable conditions for some time.

Alternate Scenarios

The two scenarios presented are but a small fraction of possible conditions that could exist in this building. Failure of a window, partial closing of a door (or doors), fuel type, the specific location of the occupants (on the bed versus on the floor) can all impact on potential fire conditions and survivability. All of which are not fully known to responding firefighters (who simply know that they have persons reported, and their observation of B-SAHF (Building, Smoke, Air Track, Heat, and Flame) indicators.

Tactical Options

This tactical discussion will focus on the issue of door control, and as such the variable of fire control tactics will be held constant by stating that given building configuration and access, the fastest approach to getting water into the fire compartment is by making access through the front door.

There are two basic decision points related to door control. Should the position of the door be changed immediately (e.g., during 360o reconnaissance) and should the door be open or controlled (partially closed) from the time the hoseline is stretched to the interior until water is effectively applied to the fire.

Each of these decisions must be made in a timely manner and knowing when and if you will control the door should be a key element of your firefighting doctrine. In making this decision, it is essential to recognize that tenable conditions for trapped occupants and control of the fire environment to permit entry for fire control and primary search are both important considerations.

Close the Door: If the door is open, closing it will have several impacts on fire behavior. HRR will diminish and temperature within the building will be reduced. However, the smoke level will likely drop lower to the floor, but this effect will vary with location.

Open the Door: If the door is closed, opening it prior to a charged hoseline being in place will introduce fresh air (and oxygen). However, the effects of this action will occur primarily along the flow path between the opening and the fire (having limited effect on occupants in any other location). In addition, the additional air will increase the HRR from the fire. Increased HRR will likely overwhelm the limited ventilation provided by the opening, causing the upper layer to drop, with a small area of clear air at floor level just inside the door.

Door Control After Entry: If the door is controlled (partially closed) after entry, the flow of both hot smoke and air in the flow path between the fire and the front door will be reduced, limiting the increase in HRR and slowing fire progression in the upper layer between the fire and the entry point. Controlling the door after entry generally requires commitment of at least one member to door control and aiding in movement of hose through the controlled opening.

Door Open After Entry: If the door is open after entry, flow of hot smoke and air between the fire and the front door will increase as the fire receives additional oxygen and HRR increases. Extension of flames and ignition of gas phase fuel in the upper layer between the fire and the entry point is likely and should be anticipated. Access and egress through the door and for advancement of hose is unimpeded if the door remains in an open position.

The outcome of each of these choices is impacted by the distance between the entry point/ventilation opening and the fire (this influences both the speed with which the fire reacts to additional air and the time that it will take to advance the hoseline into a position where a direct attack can be made on the fire).

Proactive Action Steps

While this post examines tactical options, the ideal outcomes is to prevent the fire from occurring in the first place, to increase the potential for occupants to escape prior to the development of untenable conditions, or for occupants to take refuge in a manner that will provide a tenable environment until the fire service can remove the threat or aid the occupants in their escape. Proactive steps would include the following:

Home safety surveys to identify fire hazards and reduce the risk of fire occurrence as well as ensuring that homes have working smoke detectors and a home fire escape plan.

Public education and fire code requirements to encourage or require residential sprinklers to increase the potential time for occupants to escape.

Public education on the value of sleeping with your door closed and closing doors when escaping from a fire.

Dispatch protocols to prompt occupants to close doors as they exit or to take refuge behind a closed door if they cannot escape.

Train other emergency response personnel such as law enforcement and emergency medical services regarding the importance of not increasing ventilation to vent limited fires.

However, once a fire occurs and the fire department responds, our actions can have a significant impact on the outcome.

Firefighting Doctrine

The starting point for defining doctrine is to first, recognize that there is no single answer or silver bullet that will provide an optimal outcome under all circumstances. A second consideration is that you will never (this is one of the only absolutes) have enough information to clearly and definitively know exactly what is happening, what will happen next, and what impact your actions will have (you should have a good idea, but will not know with complete certainty). Starting points for thinking about integrating door control and anti-ventilation into your firefighting doctrine include:

Research (Kerber, 2011, 2013) has provided solid evidence that when water cannot be immediately applied to the fire, closing the door will generally improve conditions on the interior. That said, there may be times when door control may not be necessary or may be contraindicated.

If water can immediately be applied to the fire from the point of entry or within close proximity to the point of entry (e.g., the fire is not shielded), door control may not be needed prior to direct attack (but likely will not make things worse if it is performed).

Control of doors in the flow path to confine hot smoke and fire gases may make operations safer and improve tenability for both trapped occupants and firefighters (think about the Isolate in Vent, Enter, Isolate, and Search (VEIS)).

Doctrine should be based on evidence provided by research and fireground experience. Both are necessary, but neither is sufficient.

Editors Note: A Year of Transformative Leadership in Security & Fire Safety Publications

As 2024 draws to a close, Fire & Safety reflects on a year defined by relentless innovation in advertising, branding, and promotion. Our dedication...

Safeguarding Lives: A New Era of Fire Safety and Recognition in India

On November 28, 2024, Bhubaneswar witnessed a landmark event at Hotel Hindustan International—the 65th Safe India Hero Plus Awards and the curtain raiser for...

Related Article

Editors Note: A Year of Transformative Leadership in Security & Fire Safety Publications

As 2024 draws to a close, Fire & Safety reflects on a year defined by relentless innovation in advertising, branding, and promotion. Our dedication...

Safeguarding Lives: A New Era of Fire Safety and Recognition in India

On November 28, 2024, Bhubaneswar witnessed a landmark event at Hotel Hindustan International—the 65th Safe India Hero Plus Awards and the curtain raiser for...

The essential tech needed to protect oil platforms, workers, and the environment

Oil platforms operate in one of the most high-risk environments where security and environmental risks are ever-present. To mitigate these risks, cutting-edge security technologies...

Interface with Mr. Gaurav Taywade (Director, India Operations, Vicon Industries)

Q.1. Could you brief our readers about yourself and VIcon? What's the success mantra of this wonderful journey with Vicon? About Myself and Vicon:...

‘IFSEC India is a pioneer in its domain and the biggest electronics security expo held in South Asia since 2007’

Q: The 17th edition of IFSEC India Expo is scheduled to be held from Dec 12-14 2024 in Halls 8,9,10,11 and 12 at ITPO,...